n*w* Learning Navigation Structures

Approaches and Findings

Topics of our research group...

- «Information logistics»
 - meta data models
 - automatic generation of metadata
 - information extraction
 - Information retrieval

- Supporting knowledge-intensive processes
 - Re-use of experience and knowledge
 - Decision support (business intelligence)
 - Knowledge engineering

n

Introduction to the Problem

r

Hypothesis 1 (unproven)

some people like to structure information hierarchically

Hypothesis 2 (to be proven)

- If you give me your email folders

 → will I be able to make sense of them?
 → will I be able to find stuff?
 → or will there be a «retrieval gap» between your worldview and mine?
- Is it maybe easier (for me) to understand a hierarchy that was computed automatically?

Hypothesis: yes, if the result is properly explained!

Starting point (1)

- We have resources (documents, pictures, ...) with metadata
- we represent this as a graph...

possible metadata: keywords, tags, topics, creator, creation date, type,..., conference/journal, publisher, editor,...

Starting point (2)

- Research project together with BDH Solutions, software SEEK!SDM:
 - Resources are organised manually into dossiers
 - Dossiers are organised manually into a topic tree

Goals for Text Mining

- Goal: make navigation structures...
 - ...more easily understandable
 - ... easier to maintain

■ Therefore, we want to apply text and data mining to...

- ... create additional links in existing topic trees
- ... compute topic trees from scratch
- ... Provide explanations: justify additional links, label nodes of topic trees

n

Some technical details

k m

Creating additional links: goals

We would like to...

- ... represent the context of an information object (as a graph with typed vertices and edges)
- ... **discover** rules (=abstract paths) to recommend resources
- Iearn how good these rules are by analysing existing human-made assignments
- ...explain recommendations by means of our symbolic representation

Creating additional links: definitions

- A dossier is a collection of information resources in a target information management system.
- A positive example of similarity is a manual assignment, e.g. a pair (D,R) where R is a resource assigned to dossier D
- A negative example of similarity is any pair (D,R) where no such assignment exists
- An abstract path is a sequence of edge types. Example: (creator, creator)
 Person p Resource R

Creating additional links: general procedure

Idea: for a dossier D, find resources that can be reached via many «promising» paths

- Preparation: learn a score lift(p) for each abstract path p that tells how likely p connects positive examples (i.e. use manual assignments as training data)
- 2. For a given dossier D, find all resources R_i that can be reached from D via short paths, score R_i by the sum of scores of the corresponding abstract paths
- 3. Output: list of R_i , ranked by their score

Learning a topic tree from scratch (1)

- Goal: learn a complete topic tree that can be used for browsing
- We describe each resource by a list of vectors (one for each type of attribute, e.g. one for tags, one for keywords, one for authors etc.)
- We define a distance measure for these descriptions and use it to cluster resources hierarchically

Figure 1: Two clusters with resource representations

Hans Friedrich Witschel

Learning a topic tree from scratch (2)

When we merge two clusters, we create a similarity explanation (summary of characteristics shared by both clusters)

Learning a topic tree from scratch (3)

■ Finally, we collapse the binary dendogram (clustering tree):

- traverse the tree from top to bottom
- for consecutive pairs of nodes on a path, compare their similarity explanations
- If they were merged for «the same reason» collapse them into one node, otherwise create different nodes
- Label the final tree nodes using the similarity explanations

n

Results and discussion

n

Creating additional links: results

• Some qualitative results that we obtained:

Abstract path	Natural language description		
dossier-has-resource -> resource-	"the recommended resource shares a tag		
has-tag -> resource-has-tag	with a resource of this dossier"		
dossier-has-tag -> resource-has-	"the recommended resource shares a tag		
tag	with this dossier"		
dossier-has-creator -> resource-	"the recommended resource was created		
has-creator	by the person who also created this		
	dossier"		
dossier-has-topic -> dossier-has-	The recommended resource was created		
topic -> dossier-has-creator ->	by a person who also created a dossier		
resource-has-creator	with the same topic as this one.		

Conclusion: this seems to make intuitive sense...

Automatically computed topic trees: experiment

- «Traditional» evaluations compare computed topic trees to manually created ones («gold standard»)
 - But: the computed tree might be better suited for navigation!
- Our approach: compare both trees by applying them in a user task
 - provide a manually created and a computed tree
 - give some randomly selected documents to test persons, ask them to locate these documents in both trees
 - record the time plus the number of backtracks needed to find resources

Automatically computed topic trees: results

Test	Tree	Testperson 1		Testperson 2	
Case		Time	Back-	Time	Back-
		(sec.)	tracks/	(sec.)	tracks/
			min.		min.
	Manual	595*	2.9	270*	2.7
1	SE-labels	202	1.8	173	0.3
	Manual	6 5	0.9	191	3.8
2	SE-labels	45	0	20	0
	Manual	96	3.8	310*	7.5
3	SE-labels	21	0	58	1.0
	Manual	329	2.4	131	0.9
4	SE-labels	226	1.1	456*	1.4

Table 1: Summary of time needed to locate test cases, and number of backtracks per minute. Cases that were given up are marked with *

- test persons found the computed tree «cryptic» at first glance, but surprisingly easy to work with
- They took longer to find documents in the manually created tree because they were not familiar with the company's terminology and way of organising things

What might it mean for libraries?

- Manually created hierarchies of topics reflect a certain world view (e.g. that of librarians or domain experts) that may not be shared by the users
 - This can make it hard to find certain resources
 - Yes, automatic approaches may result in hierarchies that are easier to navigate
 - But: does the manually created hierarchy not in itself contain valuable knowledge (about how to structure a topic) that is learned when browsing it?
 - What is more important?
 - \rightarrow creation of additional links might be a good compromise...

Additional links in a library catalogue?

- In a library catalogue, a manually created hierarchy provides orientation about a topic
- To mitigate the «retrieval gap» between the librarians' and the users' worldview, we could add links to similar resources
- Similarity could be based on
 - content
 - metadata
 - usage patterns

Information and Knowledge

Management Research Group

¡Thank you!

References

- J. Lutz, B. Thönssen, and H. F. Witschel. Breaking free from your information prison - A recommender based on semantically enriched context descriptions. In *Proceedings of the First International Conference on Enterprise Systems*, 2013.
- H. F. Witschel, B. Thönssen and J. Lutz. Where Did I(t) put it? A holistic solution to the automatic construction of topic trees for navigation. In *Proceedings of KMIS'14*, 2014.